Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(5): e0250073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33939719

RESUMO

According to the forest resources inventory data for different periods and the latest estimation parameters of forest carbon reserves in China, the carbon reserves and carbon density of forest biomass in the Tibet Autonomous Region from 1999 to 2019 were estimated using the IPCC international carbon reserves estimation model. The results showed that, during the past 20 years, the forest area, forest stock, and biomass carbon storage in Tibet have been steadily increasing, with an average annual increase of 1.85×104 hm2, 0.033×107 m3, and 0.22×107 t, respectively. Influenced by geographical conditions and the natural environment, the forest area and biomass carbon storage gradually increased from the northwest to the southeast, particularly in Linzhi and Changdu, where there are many primitive forests, which serve as important carbon sinks in Tibet. In terms of the composition of tree species, coniferous forests are dominant in Tibet, particularly those containing Abies fabri, Picea asperata, and Pinus densata, which comprise approximately 45% of the total forest area in Tibet. The ecological location of Tibet has resulted in the area being dominated by shelter forest, comprising 68.76% of the total area, 64.72% of the total forest stock, and 66.34% of the total biomass carbon reserves. The biomass carbon storage was observed to first increase and then decrease with increasing forest age, which is primarily caused by tree growth characteristics. In over-mature forests, trees' photosynthesis decreases along with their accumulation of organic matter, and the trees can die. In addition, this study also observed that the proportion of mature and over-mature forest in Tibet is excessively large, which is not conducive to the sustainable development of forestry in the region. This problem should be addressed in future management and utilization activities.


Assuntos
Biomassa , Carbono/metabolismo , Florestas , Ciclo do Carbono , Fotossíntese , Pinaceae/metabolismo , Pinaceae/fisiologia , Tibet
2.
Ecotoxicology ; 21(7): 1889-98, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22661314

RESUMO

The cosmopolitan silverleaf whitefly, Bemisia tabaci which had coexisted with Trialeurodes vaporariorum in Northern China for many years, has become the dominant species in the last years. Recent reports show that it is gradually displacing the other greenhouse whitefly species. Neonicotinoid, which includes nitenpyram, is a major group of insecticides used against whiteflies in various crops. When exposed to low doses of insecticides, insects may develop resistance by adapting physiologically. The short- and long-term effects of nitenpyram on insecticide sensitivity in B. tabaci biotype B and T. vaporariorum adult populations have been compared in the present study. After being exposed to LC(25) of nitenpyram for 24 h, the B. tabaci biotype B adults showed no significant change in susceptibility to nitenpyram or to five other insecticides: imidacloprid, acetamiprid, abamectin, chlorpyrifos and beta-cypermethrin. By contrast, exposure to the LC(25) of nitenpyram for 24 h led to a significant increase in the susceptibility of T. vaporariorum to nitenpyram and imidacloprid, by 1.8- and 2-fold, respectively. When exposed for seven generations to the LC(25) of nitenpyram, B. tabaci developed 6-fold resistance to nitenpyram, and 3.1- and 5-fold cross-resistance to imidacloprid and acetamiprid, respectively, whereas T. vaporariorum developed lower resistance (3.7-fold) to the nitenpyram and very low cross-resistance to imidacloprid (2.5-fold). The higher adaptable nature of B. tabaci (demonstrated here in the case of nitenpyram) when exposed to low doses of insecticides may provide a selective advantage when competing with T. vaporariorum in crops.


Assuntos
Hemípteros , Inseticidas , Piridinas , Animais , Resistência a Inseticidas , Dose Letal Mediana , Neonicotinoides , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...